2008

Direct Imaging of the Structure, Relaxation and Sterically Constrained Motion of Encapsulated Tungsten Polyoxometalate Lindqvist Ions within Carbon Nanotubes, J. Sloan, G. Matthewman, C. Dyer-Smith, A-Y. Sung,Z. Liu, K. Suenaga, A. I. Kirkland, and E. Flahaut, ACS Nano, 2(5), 966, 2008.

Thin silicon strip devices for direct electron detection in transmission electron microscopy G. Moldovan, X. Li, P. Wilshaw and A. I. Kirkland, Nuclear Instruments and Methods in Physics Research, A591, 134, 2008.

High-Resolution TEM and the Application of Direct and Indirect Aberration Correction C. J. D. Hetherington, L.-Y.Chang, S. Haigh, P. D. Nellist, L. Cervera Gontard, R. E. Dunin-Borkowski and A. I. Kirkland, Microscopy and Microanalysis, 14(1), 60, 2008.

Imaging Modes for Scanning Confocal Electron Microscopy in a Double Aberration-Corrected Transmission Electron Microscope, P. D. Nellist, E. C. Cosgriff, G. Behan and A I Kirkland, Microscopy and Microanalysis, 14(1), 82, 2008.

Imaging in Double Aberration Corrected Scanning Confocal Electron Microscopy. Part 1. Elastic Scattering, E C Cosgriff, A J D’Alfonso, L J Allen, S D Findlay, A I Kirkland and P D Nellist, Ultramicroscopy, 108, 1558, 2008.

Imaging in Double Aberration Corrected Scanning Confocal Electron Microscopy. Part 2. Inelastic Scattering, E C Cosgriff, A J D’Alfonso, L J Allen, S D Findlay, A I Kirkland and P D Nellist, Ultramicroscopy, 108, 1567, 2008.

Simulating Atomic Resolution STEM Images of Non-Periodic Sample,s S.D. Findlay, A.J. D’Alfonso, L.J. Allen, M.P. Oxley, P.D. Nellist, E.C. Cosgriff, G. Behan, A. Kirkland, N. Shibata, T. Mizoguchi, and Y. Ikuhara, Microsc. Microanal. 14(S2), 928, 2008,

Counting Electrons in Transmission Electron Microscopes, G. Moldovan, X. Li, P. Wilshaw and A. I. Kirkland, Microscopy and Microanalysis 14(S2), 912, 2008

Three-dimensional Imaging and Analysis by Optical sectioning in the Aberration Ccorrected Scanning Transmission and Scanning Confocal Electron microscopes, P D Nellist, E C Cosgriff, G. Behan, A I Kirkland, A J D’Alfonso, S D Findlay and L J Allen, Microsc. Microanal. 14(S2), 104, 2008

Low Dose Aberration Corrected  Cryo Electron Microscopy of Organic Specimens, J. E. Evans, C. Hetherington, A. I. Kirkland, H. Stahlberg and N. Browning, Ultramicroscopy,  108, 1636, 2008.

Characterisation of a Detector Based on Microchannel Plates for Electrons in the Energy Range 10-20keV, G.Moldovan, J.Matheson, G.Derbyshire, A.I. Kirkland, Nuclear Instruments and Methods in Physics Research, A596, 402, 2008.

Combining Theory and Experiment in Determining the Surface Chemistry of Ceria Nanocrystals A. S. Barnard and A.I. Kirkland, Chem. Mater; 20(17); 5460, 2008;

Scanning Confocal Electron Microscopy in a Double Aberration Corrected Transmission Electron Microscope, P D Nellist, E C Cosgriff, G. Behan, A I Kirkland, A J D’Alfonso, S D Findlay and L J Allen, Proc. EMC2008, M. Luysberg, K. Tillmann, T. Weirich, (Eds.) 1, 39, 2008.

Direct electron detectors for TEM, G. Moldovan, X. Li, P. Wilshaw and A. I. Kirkland, Proc. EMC2008, M. Luysberg, K. Tillmann, T. Weirich, (Eds.) 1, 85, 2008.

The Benefits of Statistical parameter Estimation Theory for Quantitative Interpretation of Electron Microscopy Data, S. van Aert, S.Bals, L.Y. Chang, A. J. den Dekker, A. I. Kirkland, D. van Dyck, G. van Tendeloo, Proc. EMC2008, M. Luysberg, K. Tillmann, T. Weirich, (Eds.) 1, 97, 2008.

Optical Depth Sectioning of Metallic Nanoparticles in the Aberration Corrected Scanning Transmission Electron Microscope, G. Behan, A.I. Kirkland, P.D. Nellist, Proc. EMC2008, M. Luysberg, K. Tillmann, T. Weirich, Eds. 1, 297, 2008.

New Considerations for Exit Wavefunction Restoration under Aberration Corrected Conditions, S.J. Haigh, L.Y. Chang, H. Sawada, N.P. Young, A.I.Kirkland, Proc. EMC2008, M. Luysberg, K. Tillmann, T. Weirich, Eds. 1, 765, 2008.

Three-dimensional imaging using Aberration-corrected scanning transmission and confocal electron microscopy, E C Cosgriff, A J D’Alfonso, L J Allen, S D Findlay, A I Kirkland and P D Nellist, J. Phys.: Conf. Ser (EMAG 2007), 126, 012036, 2008.

Oxford CyberSEM: Remote Microscopy, M. Rahman, A. I. Kirkland, R. R. Meyer and D. J. H. Cockayne J. Phys.: Conf. Ser (EMAG 2007), 126, 012030, 2008.

Aberration Corrected Tilt Series Reconstruction, S.J. Haigh, A.I.Kirkland and L.Y.Chang, J. Phys.: Conf. Ser (EMAG 2007), 126, 012042, 2008.

Aberration corrected TEM: Current Status and Future Prospects, A. I. Kirkland, J. Phys.: Conf. Ser (EMAG 2007), 126, 012034, 2008.

Depth Sectioning Using Electron Energy Loss Spectroscopy, A D'Alfonso, E C Cosgriff, S. Findlay, A. I. Kirkland, P. D. Nellist, L. Allen, M. Oxley, J. Phys.: Conf. Ser (EMAG 2007), 126, 012037, 2008.

Can Direct Electron Detectors Outperform Phosphor-CCD Systems for TEM ?, G. Moldovan, X. L, P. Wilshaw and A. I. Kirkland, J. Phys.: Conf. Ser (EMAG 2007), 126, 012089, 2008.

DFT Calculations of KI Crystals Formed Within Single-Walled Carbon Nanotubes and Quantitative Comparisons with the Experimental Restored Phase, E. L. Sceats, M. L.H. Green, A. I. Kirkland and J. C. Green, Chem. Phys. Letts.,466, 76, 2008.

Band-gap Modification Induced in HgTe by Dimensional Constraint in Carbon Nanotubes: Effect of Nanotube Diameter on Microstructure, J.Sloan; R. Carter; A. Vlandas, R. R. Meyer; Z. Liu, K. Suenaga, P. J. D. Lindan, G. Lin J. Harding, E. Flahaut, C. Giusca, S. R. P. Silva, J. L. Hutchison, A. I. Kirkland, Springer Proceedings in Physics 120 Issue Microscopy of Semiconducting Materials 2007, 213, 2008.

Theoretical interpretation of electron energy-loss spectroscopic imagesL. J. Allen, A. J. D’Alfonso, S. D. Findlay, M. P. Oxley, M. Bosman,V. J. Keast, E. C. Cosgriff, G. Behan, P. D. Nellist and A. I. Kirkland Proceedings of EMMS 2007, AIP Conference Proceedings 999, 32, 2008.